Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture.
نویسندگان
چکیده
The stiffness of motion segments, together with muscle actions, stabilizes the spinal column. The objective of this study was to compare the experimentally measured load-displacement behavior of porcine lumbar motion segments in vitro with physiological axial compressive preloads of 0, 200 and 400 N equilibrated in a physiological fluid environment, for small displacements about the neutral posture. These preloads are hypothesized to increase stiffness, hysteresis and linearity of the load-displacement behavior. At each preload, displacements in each of six degrees of freedom (+/-0.3 mm AP and lateral translations, +/-0.2 mm axial translation, +/-1 degrees lateral bending and +/-0.8 degrees flexion/extension and torsional rotations) were imposed. The resulting forces and moments were recorded. Tests were repeated after removal of posterior elements. Using least squares, the forces at the vertebral body center were related to the displacements by a symmetric 6 x 6 stiffness matrix. Six diagonal and two off-diagonal load-displacement relationships were examined for differences in stiffness, linearity and hysteresis in each testing condition. Mean values of the diagonal terms of the stiffness matrix for intact porcine motion segments increased significantly by an average factor of 2.2 and 2.9 with 200 and 400 N axial compression respectively (p<0.001). Increases for isolated disc specimens averaged 4.6 and 6.9 times with 200 and 400 N preload (p<0.001). Changes in hysteresis correlated with the changes in stiffness. The load-displacement relationships were progressively more linear with increasing preload (R(2)=0.82, 0.97 and 0.98 at 0, 200 and 400 N axial compression respectively). Motion segment and disc load-displacement behaviors were stiffer, more linear and had greater hysteresis with axial compressive preloads.
منابع مشابه
Structural behavior of human lumbar spinal motion segments.
The objectives of this study were to obtain linearized stiffness matrices, and assess the linearity and hysteresis of the motion segments of the human lumbar spine under physiological conditions of axial preload and fluid environment. Also, the stiffness matrices were expressed in the form of an 'equivalent' structure that would give insights into the structural behavior of the spine. Mechanica...
متن کاملA database of lumbar spinal mechanical behavior for validation of spinal analytical models.
Data from two experimental studies with eight specimens each of spinal motion segments and/or intervertebral discs are presented in a form that can be used for comparison with finite element model predictions. The data include the effect of compressive preload (0, 250 and 500N) with quasistatic cyclic loading (0.0115Hz) and the effect of loading frequency (1, 0.1, 0.01 and 0.001Hz) with a physi...
متن کاملHead-turned postures increase the risk of cervical facet capsule injury during whiplash.
STUDY DESIGN In vitro experiments using cadaveric cervical spine motion segments to quantify facet capsular ligament strain during whiplash-like loading. OBJECTIVE To quantify facet capsule strains during whiplash-like loading with an axial intervertebral prerotation simulating an initial head-turned posture and to then compare these strains to previously-published strains for partial failure...
متن کاملEffect of follower load on motion and stiffness of the human thoracic spine with intact rib cage.
Researchers have reported on the importance of the rib cage in maintaining mechanical stability in the thoracic spine and on the validity of a compressive follower preload. However, dynamic mechanical testing using both the rib cage and follower load has never been studied. An in vitro biomechanical study of human cadaveric thoracic specimens with rib cage intact in lateral bending, flexion/ext...
متن کاملارتعاشات مجموعه تیرهای تیموشنکو با اتصالات میانی تحت عبور سیستم شش درجه آزادی دومحوره
In this article, the vibration analysis of a set of parallel Timoshenko beams connected by intermediate flexible connections, with arbitrary numbers, is studied. The moving load is a vehicle, which is modeled by a two-axle six degrees of freedom system, as a mass-spring-damper system, in a plane motion. For the solution, a new method is proposed which uses a change of variables strategy to deco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2003